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Opening Remarks: Motivating the 

Problem

• Common research questions in assessment and 

validation studies use regression are: 

– which of the variables is most predictive of the 

criterion measure? 

– what variable(s) is most explanatory of our test 

scores?  

• Let's consider an example to motivate our 

discussion of a validation study investigating 

predictors of a test of “knowledge of numbers”, a 

grade 8 mathematics test.



Opening Remarks: Motivating the 

Problem

• The criterion is: 

– Number Knowledge (9 items)

• Predictors are: 
1) availability of computers, 

2) time spent on math homework, 

3) tutoring or extra lessons, 

4) number of books at home -- all of which are 

observed variables, and 

5) a measure (test) of how much the student’s value 

the “importance of mathematics” (4 items).
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Opening Remarks
• There are three strategies that are typically 

discussed in the literature:
I. Compute observed total scores (e.g., number correct scores on 

the math test and a scale score on the value of the importance 

of math).

▪ Fit a regression equation and test model parameters using the observed total 

scores in place of the discrete test items.

II. Predicting Individual Abilities / Traits  (IRT or factor scores) on 

the “math test” and separately on the “valuing math” scale.

a. Likelihood Based

b. Posterior Distribution Based

c. Plausible Values (Multiple Imputation) .. Not really a “prediction”, like (a) or (b).

▪ IRT external to the regression. Fit a regression equation and test model 

parameters using the predicted IRT or factor scores in place of the discrete test 

items. 

III. Embedding IRT in a Structural Equation Model.
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I. Observed total score 
(number correct score)

• The common approach is to treat this test and/or scale 
scores as an observed score composite and use the 
composite score as variables in an analysis.
– In ordinary least-squares regression, measurement error in the 

criterion variable can perhaps be absorbed into the error term. 

• However, measurement in the predictors is not 
accommodated for and can be quite problematic. 
– Estimated regression coefficients are biased even as the sample 

size approaches infinity.

– Type I error rates can be seriously inflated.
• As a side note, far less widely known is that the Type I error is inflated; can 

approach 1.0  (correlation among predictors, and measurement error; see 
Shear & Zumbo, 2013, in EPM)

– Cochran (1968), Fuller (1987), and Brunner & Austin (2009).



II. Predicting Individual Abilities / Traits

• IRT is used externally to the regression model as a way 

of getting predicted theta (  ) scores to then input in the 

regression -- or if continuous item scores one could 

use linear factor analysis.

• 2 types of methods of predicting ability (i.e., obtaining)

- Likelihood Based

- Posterior Distribution Based

• Will be assumed that item parameters and the 

parameters of the ability distribution are known exactly.

• In practice, item parameters will be replaced by their 

consistent estimates, which is current practice in IRT.

̂
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Plausible Values (Multiple Imputation)

– Treat abilities as missing

– Use random draws from the predictive 

distribution to estimate regression parameters

– Used at Statistics Canada in PISA and TIMMS

– For multiple imputation in the IRT context, see 

Rubin (1987) and Mislevy, Johnson, & Muraki

(1992)
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A. Likelihood Based Methods

1. MLE (Maximum Likelihood Estimates):

- Treats a subject’s ability as a fixed parameter,    , and 
assumes that the subject’s score (test outcomes x) is a 
random draw from a population of subjects having that 
particular ability

- The appropriate likelihood for ML estimation is,

- Maximization yields the MLE

• Asymptotic conditional bias is of order O(1/n)

• Conditional mean squared error (MSE) with error term of order o(1/n)

• Need the number of test items, n, large!
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A. Likelihood Based Methods

2. WLE (Weighted Likelihood Estimates)

– Obtained by maximizing the above likelihood, multiplied by 

a function of 

– Has smaller bias properties as 

– Smaller conditional bias than MLE, o(1/n) instead of O(1/n)

– But has same asymptotic conditional MSE.



→n
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** Please recall that n denotes the number of items or indicator variables.

** Please note that o() and O(), little-o and big-O, are used to symbolically 

express the asymptotic behavior of a given function; see Landau’s formalism 

for ”on the order of”. 



B. Posterior Distribution Based Methods

The posterior distribution of    can be written as

1. Bayes Modal Predictor – also known as the maximum a 

posteriori (MAP) predictor

- This is obtained by maximizing the above posterior distribution 

for each subject

- Conditional bias and unconditional bias is of order O(1/n)
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** Please recall that n denotes the number of items or indicator variables. 



2. Bayes Posterior Mean: also known as expected a posteriori

(EAP) predictor

• EAP is the mean of the posterior distribution 

• Sample mean (for i.i.d. samples) of the EAP 

predictor is an unbiased estimator of the mean of 

the ability distribution 

• However, the unconditional variance < unconditional 

variance of the latent ability distribution

• This holds for the empirical Bayes predictor for 

large samples. A potentially troublesome property 

unless the number of test items is sufficient large. 
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II. Graphical Depiction of Regression with 
Predicted Variables
– For example, use the EAP prediction    and     from the 

data file

– Perform the regression with    ,   , and Z

̂ ̂

̂ ̂

Regression 
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The Problem with Predicting the 

Scores
• Predicted ability scores are susceptible to a major 

source of error which is a function of the number of 
items (n) in the test.

• For a test of fixed n, the distribution of the 
predicted values (scores) does not converge to the 
distribution of the latent variable as sample size (N)
goes to infinity (Lord, 1965, 1969; Little & Rubin, 
1983; Louis, 1984).

• Must have number of items n go to infinity.  

• Thus, analyses based on predicted ability values 
(scores) are subject to bias of the resultant 
regression parameter estimates.
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Notice that this is a SEM on discrete variables
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III. Embedding IRT in a Structural 

Equation Modeling (SEM)
– Simultaneous estimation without predicting latent 

variable scores. For example:



Specifically, we have

the structural model: the measurement models:

▪ Estimate by optimizing a quadratic

discrepancy measure

❖ Benefits:

- Obtains consistent estimates of fixed parameters

- No predictions of individual scores
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Let’s take a closer look

the structural model: the measurement models:
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We all recognize this part.

But what is this part?

It is a factor analysis 

on discrete variables.

This example is for 

binary items 18



• But it is true that:

Discrete factor analysis      Normal Ogive IRT model

• And so, in this approach, when we perform SEM, we are actually 

fitting a simultaneous IRT/SEM model


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Thus, parameter estimation in the discrete SEM is equivalent to 

simultaneous estimation of IRT item parameters and the latent 

regression parameters.

Will get consistent estimators of the structural parameters (Browne 

and Arminger, 1995) for finite number of items.

This approach side-steps the prediction of the latent variable 

scores.
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AN EXAMPLE OF EMBEDDING 

IRT IN SEM

Along the way, you can also see how one can order the predictors 

in terms of importance using a method introduced by Zumbo 

(2007).
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Method

Instrument

• TIMSS 2003 grade-8 mathematics tests were used as 
our mathematic achievement measure. A total of 12 
booklets were used in the test. As for the purpose of 
demonstration, we only used one booklet (booklet 8) in 
the present study. 

• Student’s questionnaire was used to obtain students’ 
background variables.

Sample

• A total of 682 USA participants responding to booklet 8 
with 324 boys and 358 girls.
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Example

Number

Self-Confidence in 

learning Math

V1

eV1 eV2 eV3 eV4

ordinal

⋮
⋮

N2

N8

N1
eN1

eN2

eN8

N9
eN9

binary

ordinal

V2 V3 V4

Private Tutoring Time

Homework Time

Number of Books

Computer Availability



How is the model estimated?

24

Please note that throughout we used the Mplus framework and 

structural equation (covariance) modeling software to fit the 

MIMIC models and get the appropriate regression and 

correlation coefficients using the correct correlation matrix

involving binary, ordinal, and continuous observed variables 

(Muthén & Muthén, 2010, Version 6).



25

Example

Number

Self-Confidence in 

learning Math

V1

eV1 eV2 eV3 eV4

ordinal

⋮
⋮

N2

N8

N1
eN1

eN2

eN8

N9
eN9

binary

ordinal

V2 V3 V4

Private Tutoring Time

Homework Time

Number of Books

Computer Availability

ordinal 

Modeling of ordinal

and binary item responses

as well as observed and 

latent variable predictors.

Note that we added a 

latent variable predictor 

“Self-confidence in 

learning Math”.
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Results

Model-
DV: Number 
Knowledge

IV r Prat t

t imehw 0 .157 0 .2 10 0 .0 72

avlcompu 0 .170 0 .2 6 0 0 .0 9 7

t ut orhr - 0 .2 19 - 0 .2 4 4 0 .117

numbook 0 .2 75 0 .3 54 0 .2 13

self - conf 0 .4 79 0 .517 0 .54 2

R - squared0 .4 57

jb

These 4 

variables 

together 

= 0.458

Within 

this set 

“Number 

of Books” 

is most 

important

“Self-confidence 

in learning 

math” is the 

most important 

predictor.

Note:

Zumbo (2007) describes the latent variable Pratt index as  



Conclusions

• Predicted latent variable scores should be 

used with caution

- in discrete case, large number of items 

needed

- In NLSCY, the bias in EAP variance found 

by Thomas and Cyr (2002) for 20 items is 

equivalent to a R2 bias of 40%.

- for continuous items, Skrondal & Laake

(2001) conclude that “conventional factor 

score regression performs badly and 

should definitely be abandoned.”
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Conclusions
• In discrete case, simultaneous IRT-SEM 

approach may provide an alternative to 

plausible value methods

- IRT-SEM models do not require large 

set of conditioning variables

- sample size requirements may be 

limiting in some contexts

- however, using reliable calibrated items 

will get better convergence even with 

small sample size 
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