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4.1. Introduction

If the statistical, conceptual, and practical activities
of measurement were a crop seeded by Spearman,
Yule, Pearson, and others working the early fields
of social and behavioral research, we could proudly
say that those seedlings have resulted in a bountiful
harvest. The annual yield of measurement research
continues to grow, and the number of new journals and
books devoted to and surveying the field and reporting
advances has increased over the past decade. The goal
of indexing data quality has a longstanding tradition in
statistical modeling, and its ubiquity in psychometric
modeling thus comes as no surprise, which is why
research in reliability and validity theory continues to
be of relevance today, as a quick glance at the reference
list of this chapter reveals. Before we begin to describe
the process of harvesting the statistical crops that have

been sown, however, let us first take a look at the
analyst’s task in measurement itself.

Analysts of test data are typically faced solely with
an array of numbers, which often consists of 0s and
1s when all items on a test are scored dichotomously.
It is the objective of the analyst to use this array for
a variety of meaningful inferences about the exam-
inees and the measurement instrument itself, which
should be appreciated as a daunting task. Statistical
modeling has always been concerned with decom-
posing observational values into a component that is
deterministic and a component that is stochastic so
that relationships between manifest and unobserved
variables can be explicitly stated and uncertainty about
model parameters can be estimated and used to qual-
ify the inferences that are possible under a given
model. Psychometric models are, of course, descen-
dants of this tradition (see Goldstein & Wood, 1989;
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McDonald, 1982; Mellenbergh, 1994; Rupp, 2002) but
are unique because they are located at the intersection
of examinee and item spaces, both of which are typi-
cally of interest to measurement specialists. For exam-
ple, classical test theory (CTT) (e.g., Lord & Novick,
1968) generically decomposes the observed score into
a deterministic part (i.e., true score) and a stochas-
tic part (i.e., error), generalizability theory (g-theory)
(e.g., Brennan, 2001; Cronbach, Gleser, Nanda, &
Rajaratnam, 1972; Shavelson & Webb, 1991) further
unpacks the stochastic part and redefines part of error
as systematic components, and item response theory
(IRT) (e.g., Lord, 1980; van der Linden & Hamble-
ton, 1997) reformulates the two model components by
inducing latent variables into the data structure. Struc-
tural equation models (SEM) (e.g., Muthén, 2002)
and exploratory as well as confirmatory factor analysis
models (EFA and CFA, respectively) (e.g., McDonald,
1999) decompose the covariance matrix of multivari-
ate data into deterministic (i.e., reproduced covariance
matrix) and stochastic (i.e., residual matrix) compo-
nents, which is a model that can be equivalently written
as a formulization involving latent variables.

Even though latent trait indicator values and
observed composite scores are typically highly cor-
related, the injection of a latent continuum into the
data matrix has given us the property of item and
examinee parameter invariance for perfect model fit
across populations and conditions, has allowed us to
define conditional standard errors of measurement sim-
ilar to g-theory (Brennan, 1998b), and has opened up
the road for adaptive testing through the use of item
and test information functions (e.g., Segall, 1996; van
der Linden & Hambleton, 1997). Still, these advances
have not come without a price. Improvements in the
level of modeling and in quantifying measurement
error have come at the expense of large sample sizes
that are typically required for parameter estimation in
both frequentist and Bayesian frameworks (see Rupp,
Dey, & Zumbo, in press). For example, categorical
data, particularly dichotomous data, require the use
of estimation methods such as weighted least squares,
which make, for example, reliability estimates based
on small sample sizes suspect (Raykov, 1997a).

The focus in this chapter is on reliability and valid-
ity, two topics that have generated many papers and
books, even if one were to focus on the past 25
years only. As it is nearly impossible to review all of
the developments in a single book chapter, we aim
to provide a broad overview of recent developments
in reliability and validity theory and periodically
provide more detail to demonstrate the vast array of
measurement methodologies and approaches currently

available to aid us in illuminating our understanding
of social and behavioral phenomena. We will view
these developments through a statistical modeling lens
to highlight the consequences of choosing—perhaps
even abusing—a particular modeling framework for
inferential decisions.

We assume a basic exposure to measurement and
test theory, but we will define basic key terms. For
an accessible overview and advances in the statistical
basis of reliability theory, the interested reader can
consult Feldt and Brennan (1989), Knapp (2001), and
Traub (1994), and for validity theory and practice,
the reader can consult Messick (1995) and the papers
in Zumbo (1998). Because our chapter presumes a
working knowledge of modeling frameworks used in
practical measurement problems, the reader might
refer to Hambleton, Swaminathan, and Rogers (1991)
or Lord (1980) as useful references for IRT, Kaplan
(2000) or Byrne (1998) as useful references for struc-
tural equation modeling, and Comrey (1973), Everitt
(1984), or McDonald (1999) as useful references for
factor analysis (FA) methods.

Our discussion begins with an overview of fre-
quently used key terms in the measurement literature
to aid the understanding of our subsequent discussions,
clarify some common misconceptions, and allow for
more precise statements. We then present some impor-
tant and practically relevant findings from the literature
on reliability theory in roughly the past decade, with
a strong focus on developments for reliability coeffi-
cients, standard errors of measurement, and other local
quantifiers of measurement error. Finally, a section
on validity theory illustrates how models for cogni-
tively diagnostic assessment have forced measurement
specialists to rethink their approaches to defining and
measuring what constitutes valid inferences from test
scores. But first, let us lay some groundwork with a
brief discussion of terminology relevant for modeling
data from measures.

4.2. Commonly Used and

Misunderstood Terms in Measurement

Although the definitions presented in this section
are fundamental, it is remarkable how often they are
used inconsistently in the measurement literature. This
is probably partly an artifact of inconsistent historical
usage but can also be traced back to a discrepancy that
typically exists between the everyday usage of these
terms and their precise meaning in a mathematical
modeling context.
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First, there is the word reliability itself. In
nonacademic contexts, reliable is commonly under-
stood to mean “a consistent dependability of judgment,
character, performance, or result” (see Braham, 1996,
p. 1628). For applied measurement specialists, reli-
ability is a desired property of tests, which should be
dependable measurement instruments of the constructs
that they are supposed to measure or dependable
measurement instruments for performance evaluation
(Klieme & Baumert, 2001). Even though these notions
are intuitively appealing, they are relatively impre-
cise and need to be translated into properties that
can be mathematically tested and estimated through
sample quantities. Consequently, reliability in a non-
mathematical sense is often understood to be so much
more than reliability in a strictly mathematical sense
because, under the latter lens, reliability is basically
translated into the estimation of a coefficient based on
variance components in a statistical model. Such a
reliability coefficient assesses consistent scores but,
per se, says little about the assessment instrument
itself, related inferences, and social consequences
because those aspects are embedded in the larger
value-laden ethical and social context of test use
(Messick, 1995).

As Zimmerman and Zumbo (2001) note, formally,
test data are the realization of a stochastic event defined
on a product space� = �I ×�J ,where the orthogonal
components, �I and �J , are the probability spaces for
items and examinees, respectively. The joint product
space can be expanded to include other spaces as
well, such as spaces induced by raters or occasions,
a concept that was formalized in g-theory from an
observed-score perspective and the facets approach
to measurement from an IRT perspective. Hence,
modeling of test data minimally requires sampling
assumptions about items and examinees, as well as
the specification of a stochastic process that is sup-
posed to have generated the data (for readers interested
in a measure-theoretic Hilbert-space approach to the
analysis of test data, see Zimmerman & Zumbo, 2001).
Therefore, two distinct directions of generalizability
are typically of interest, which require an understand-
ing of the reliability and validity properties of scores
and inferences. First, it is of interest to make statements
about the functioning of a particular assessment instru-
ment for groups of examinees who share characteristics
with those examinees who have already been scored
with it. Second, it is of interest to make statements
about the functioning of item sets that share character-
istics with those items that are already included on a
particular test form. For example, it is often of inter-
est to show that the scores and resulting inferences

for different examinee groups are comparably reliable
and valid if the same instrument is administered to the
different groups, a parallel version of the instrument
is administered to the different groups, or selected
subsets of items are administered to the different
groups. This also specifically implies that researchers
should report estimates of reliability coefficients and
other parameters for their own data, rather than rely-
ing on published reports from other data, and that
comparable validity needs to be continually assessed
rather than being taken for granted based on a single
assessment calibration. Let us take a look at some com-
monly used terms to describe the process of modeling
assessment data.

It is useful to first distinguish between test-level
models (e.g., CTT, g-theory models), in which mod-
eling takes place at the observed total-score level,
and item-level models (e.g., IRT for binary or rating
scale item data and factor analysis models for con-
tinuous item data), in which modeling takes place at
the item-score level along with the total-score level.
For the latter models, the primary modeling unit is
the item, which can be a written, aural, or graphical
stimulus that entices examinees to produce behavioral
responses. Yet the seemingly unambiguous notion of
an item is rather fluid and context dependent. For
example, items can be collected, either naturally
through their placement alongside reference informa-
tion on an assessment or statistically through defini-
tion, into item bundles or testlets, which can then
be treated as a single item in subsequent mathemat-
ical analyses (note that potential response dependen-
cies can be modeled explicitly as well; see Bradlow,
Wainer, & Wang, 1999; Wang, Bradlow, & Wainer,
2002). Moreover, in other testing contexts with com-
plex work products the definition of a single item can
become extremely challenging if not impossible, and it
might be preferable and necessary in the future to think
of measurement opportunities more generally instead.
For a recent description of the variety of items currently
being used in measurement practice, see Zenisky and
Sireci (2002).

Items can be assembled for different purposes such
as personality trait assessment or knowledge assess-
ment, and it is the latter scenario that typically leads to
instruments that are commonly called tests. In addition,
the term scale is also often used in the social science
literature on personality assessment interchangeably
with the term questionnaire. The terms test, scale,
and measure are used interchangeably in this chapter,
but it is acknowledged that tests are, in common
language, used to imply some educational achievement
or knowledge test with correct or incorrect responses.
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A subject’s response to an item then becomes a
behavioral observation in an abstract conceptual sense
that needs to be quantified with a score, which, in
turn, becomes a statistical observation. Some typical
forms of scores are the (weighted) linear composite
or total score that arises from individual items being
scored dichotomously or polytomously. Measurement
specialists then resort to specific modeling frameworks
to account for the fact that behavioral observations are
imperfect representations of the latent variable whose
relative absence or presence the assessment instrument
is supposed to quantify and, as such, contain measure-
ment error. Indeed, the choice of measurement model
has fundamental implications for how measurement
error is viewed, and these differences lead modelers to
choose particular model-specific statistics to quantify
this error. Error, then, albeit a universally present
phenomenon of observed behavioral responses, is
conceived and quantified differently in alternate
micro-universes created by different modeling frame-
works. Interestingly, the well-known psychometric
statement X = T + E is axiomatic for all models
in such frameworks.

In any modeling framework, the observable or
manifest scores created by the interaction of examinees
with items on a measure are considered to be indica-
tors or markers of unobservable or latent variables.
In this chapter, we will use the term latent variable
to refer to a random variable that is deliberately con-
structed or derived from the responses to a set of
items and that constitutes the building block of a sta-
tistical model (e.g., θ scores in IRT or factor scores
in FA). In other words, the scores are indicators of
the latent variable, which is itself supposed to be an
indicator of an underlying latent trait that is inher-
ent in the examinees and supposedly tapped into by
the items. However, these quantities and objects are
not identical: The latent variable is a psychometric
construction, whereas the latent trait is a psycholog-
ical phenomenon. Put in a nutshell, a construct is
defined with reference to a nomological network of
other phenomena, empirical findings, and theories
linking latent variables to abstract constructs (Embret-
son, 1983; Messick, 1995), whereas a latent variable
is a mathematical construction. This often leads to
confusion for applied specialists when psychometric
dimensionalities of tests do not coincide with believed
psychological dimensionalities, although this appar-
ent discrepancy is perfectly expected if the precise
distinction above is made.

Let us illustrate this distinction with an example.
The Center for Epidemiological Studies–Depression
(CES-D) is a 20-item scale introduced originally by

Lenore S. Radloff to measure depressive symptoms
in the general population. If we were studying the
measurement properties of the CES-D via CFA models
or IRT, the items would be considered indicators of
a latent variable (which most researchers would call
“depression”), but the latent variable is not depression
itself as it is merely a mathematical construction. The
latent variable is related to the construct of depres-
sion, however, which is defined as per the complex
interrelations of ideas, definitions, and empirical find-
ings in the clinical literature. Likewise, if one were
empirically scoring the CES-D by summing the item
responses, the resultant composite scale score is not
depression itself either but again only related to that
construct as an observable indicator of it. Even more
precisely, the score is an indicator of the severity of
depressive symptoms.

It should be noted, however, that the measurement
literature is generally somewhat vague and inconsistent
in its use of the term latent variable. The term has a
number of different meanings in the measurement and
statistics literature, each of which can lead to quite
different variables. There are at least three common
uses of relevance to this chapter. The first definition,
which is the closest description of a (unobserved)
latent variable in classical test theory, is that latent
variables are real variables that could, in principle, be
measured (e.g., proficiency or knowledge in a domain,
such as mathematics, or level of depressive symptoma-
tology). A second form of a latent variable is when
observed scores arise by recording whether an underly-
ing variable had values above or below fixed thresholds
(e.g., a response to a Likert-type question). The former
definition can be conceptualized within a framework
of the latter definition, although it does not neces-
sarily have to be so. The third definition, which is the
most commonly used meaning in the social sciences,
describes a latent variable as a constructed variable that
comes prior to the items (or indicators) of which we
measure. With item responses at hand and the use of a
statistical model, one can predict a score on this latent
variable for each person in the sample. This third mean-
ing is most commonly used in factor analysis, latent
variable modeling, and covariance structure models
and is therefore the one used in this chapter. In terms of
the psychometric approach to factor analysis, a latent
variable is a reason for or summary of behavioral or
cognitive manifestations. In the statistical framework,
a latent variable is defined by local or conditional
independence (statistical entity with no real theoret-
ical purpose). Statistically, it is assumed that if two
variables are correlated, they have something unob-
served in common (i.e., the latent variable). Therefore,
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uncorrelated errors (i.e., the residual correlation among
the items over and above the factors) are a key defining
feature of latent variable models.

Finally, it is useful to differentiate between
observed-score and latent variable models. When an
observed composite score is decomposed into two
independent additive components, true score and error,
without any further assumptions about the structure
of the true score, researchers have termed this CTT.
At the same time, different sets of assumptions about
the error structure and true scores for repeated assess-
ments and different sampling schemes for items and
examinees have led to the definition of parallel, essen-
tially parallel, τ -equivalent, essentially τ -equivalent,
and congeneric test scores. Moreover, if no particular
statistical model is assumed for the responses, models
in CTT are typically referred to as weak true-score
models, and if a statistical model is assumed (e.g.,
binomial, compound binomial), they are referred to
as strong true-score models. If the relationship of the
observed score to the true-score and error components
is of a specific functional form that depends on at
least one latent variable and can be formulated in a
generalized linear (latent variable) model framework,
we typically speak of latent variable models. Latent
variables belong to the class of unobservable random
variables, but they are a specific subset because their
existence is postulated, and their metric is established
through the specification of the model and the para-
meter estimation strategy. If response data are modeled
at the item level, measurement specialists refer to
these models as IRT models, which have become
increasingly popular in the past two decades due to
increasing computer power and their flexible mathe-
matical formulation. It is interesting to note that there
is no substantive theory in IRT but that, generally,
the model is the theory, which, some argue, makes
the rational link between the latent variable and the
underlying construct it potentially indexes harder to
establish as one can alternatively conceive of a latent
variable as a mere data-processing filter that allows
for ordered inferences about examinees and items (see
Junker, 1999). In general, observed and latent variable
frameworks benefit from one another and are compat-
ible as, for example, methods of covariance structure
analysis that are well suited to test assumptions about
error structures associated with CTT.

At this point, it is important to take a small side-
bar to highlight an essential difference between factor
analysis (as it is commonly used) and IRT in item
calibration. Although FA and IRT can be written as
generalized linear latent variable models, the statisti-
cal estimation problem is compounded in IRT because

the item responses are binary or ordered polytomous
random variables, and the estimation strategy neces-
sitates the estimation of the latent variable score for
each individual in order to estimate the parameters of
the item response function (i.e., calibrate the items).
This is in stark contrast to most factor analysis models,
wherein the latent variable is integrated out of the
estimation equation by, in essence, marginalizing over
the latent variable (i.e., focusing on reproducing the
observed covariance matrix).

Once items have been calibrated, examinees have
been scored, and quantifiers of measurement error have
been computed, inferences are being made grounded
in the mathematical model that was used. Ideally,
those inferences ought to be accurate and result in
fair conferences for the examinees and the assessment
discipline. Investigations of the degree to which scores
are consistent across administration conditions fall
under the umbrella term of reliability theory, whereas
investigations of the degree to which inferences made
from test scores and the consequences of decisions
based thereon are appropriate fall under the umbrella
term of validity theory. Specifically, reliability is a
question of data quality, whereas validity is a ques-
tion of inferential quality. Of course, reliability and
validity theory are interconnected research arenas, and
quantities derived in the former bound or limit the
inferences in the latter. This is seen explicitly in CTT
statistics, for example, where it can be easily shown
that a validity correlation coefficient is never greater
than the square root of the test reliability coefficient.
Moreover, to increase both reliability of scores and
validity of inferences, a surge in models for cogni-
tively diagnostic assessment has forced measurement
specialists to refocus their attention on the cogni-
tive processes that examinees are engaged in when
responding to items. This has led to a renewed dissec-
tion of what forms of evidence support valid inferences
and has brought the focus of investigations back to the
examinees.

The title of this chapter was chosen to highlight that,
when dealing with matters of reliability and validity,
we are, in essence, dealing with matters of making
inferences from test or scale scores. In other words,
data on reliability and validity gathered in the process
of measurement aid social and behavioral researchers
in judging the appropriateness and limitations of their
inferences from the test or scale scores. In the next
section, we provide an overview of reliability theory
and the statistical properties of test and scale scores.
In the section that follows, we provide an overview
of validity theory and then end the chapter with some
pointers to future developments.
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4.3. A Unified Look at Reliability

and Error of Measurement

as a Basis for Valid Inferences

Quantifying measurement error can take different
forms, depending on the scoring framework that is
used for modeling the data. Traditionally, CTT has
been used predominantly by test developers as well
as applied specialists. In CTT, reliability is quanti-
fied using reliability coefficients, and uncertainty in
scores is quantified using unconditional and condi-
tional standard error of measurement. In recent years,
the ever-growing literature on latent variable models,
particularly IRT models, might seem to suggest to
some that CTT models are passé. This would be an
inappropriate perception of testing reality, however,
fueled more by academic research practice than by
testing practice across a wide range of situations,
and we will thus briefly address this controversy. For
example, Brennan (1998a) writes, “Classical test
theory is alive and well, and it will continue to survive, I
think, for both conceptual and practical reasons” (p. 6).

Nevertheless, the growing interest in IRT by theo-
reticians and practitioners alike over the past 30 years
has been nothing short of spectacular. This is evidenced
in the number of sessions at measurement and testing
conferences and the large proportion of publications in
measurement and testing journals devoted to theoreti-
cal developments or applications of IRT. Although it is
true that IRT is frequently being used in moderate- to
large-scale testing programs and projects, CTT statis-
tics continue to be widely used in the development
and evaluation of tests and measures in many areas
of the educational, social, and behavioral sciences
that are concerned with tests and measures of limited
volume of production and distribution. For example, an
overwhelming majority of tests and measures reviewed
in source books such as the Mental Measurements
Yearbook series, produced by the Buros Institute of
Mental Measurements, or the Measures of Personality
and Social Psychological Attitudes book by Robinson,
Shaver, and Wrightsman (1991) predominantly report
CTT statistics. The primary reason for using CTT in
small-volume testing programs and in research envi-
ronments is the large sample sizes that are needed when
one seeks to apply latent variable modeling approaches
such as IRT and SEM (e.g., Bedeian, Day, & Kelloway,
1997; Bentler & Dudgeon, 1996; Junker, 1999). With
observed-score measures being alive and well, it is
thus worthwhile to investigate the recent developments
that have taken place on these measures in the past
decade. We will start appropriately with one of the
oldest and most versatile indicators of score consis-
tency, the reliability coefficient.

4.3.1. Recent Developments
in the Theory of Reliability Coefficients

In the past 10 years, particularly due to the impact
of increasing computer power, psychometric model-
ing has seen an explosion of sophisticated models that
require the computer-intensive simultaneous estima-
tion of numerous model parameters that has fueled
a rethinking of the role of reliability coefficients. It
is worth stating, though, that the dominating role of
entities such as the information function in IRT has not
changed modelers’ desire for conceptual reliability. It
has, however, changed the ways in which we look at
the mathematical formalization of reliability.

As stated before, reliability is typically measured by
a reliability coefficient, often denoted ρXX′ , which in
CTT or observed-score models is defined as the ratio of
true-score variance to observed-score variance or the
proportion of variation in the data that can be explained
by differences among individuals or objects of mea-
surement. Because the observed score is decomposed
into two additive unobserved components, leading to
ambiguities about the relative contribution of each
unobserved component to total observed variance, the
reliability coefficient cannot be computed directly.
Instead, estimators have to be defined that provide
reliability coefficient estimates based on test data from
one or multiple measurement occasions. However, it is
noteworthy that the definition of a reliability coefficient
itself, in the context of multiple measurement occa-
sions, poses subtle challenges to measurement special-
ists, who have been haunted for more than 40 years
by complications that arise from difference scores.
Some have called for a ban in difference scores because
of their supposed low reliability, but today this ban
has been lifted. It is recognized that although the
frequently cited limitations of difference scores are
real, these limitations mostly hold for restrictive situa-
tions and that there are many scenarios for which dif-
ference scores are most appropriate (Zumbo, 1999b).

A reliability coefficient is a particularly natural index
in observed-score models, and the definition of a relia-
bility coefficient in latent variable models such as IRT
or SEM is much more artificial. For both latent variable
models and observed-score models, the formulization
of conditional measurement error and information is a
natural pathway that connects different models. Yet the
reliability coefficient is intricately related to the error of
measurement. For example, variance ratios in random-
effects models prevalent in g-theory or the asymptotic
variance of the ability trait distribution in IRT models
depend directly on quantities that measure the error
in the associated models. Nevertheless, the reliability
coefficient itself is sometimes preferred as an index of
the amount of measurement uncertainty inherent in test
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scores because it is unitless and is a single informative
number that is practically easy to compute and included
in most standard software packages (see Feldt &
Brennan, 1989). Moreover, it is easily interpreted. Let
us now turn to a few commonly encountered estimators
of the population reliability coefficient.

4.3.2. Estimators of the Reliability
Coefficient and Their Properties

A fundamental fact concerning unreliability is that, in
general, it cannot be estimated from only a single trial.
Two or more trials are needed to prove the existence
of variation in the score of a person on an item, and to
estimate the extent of such variation if there is any. The
experimental difficulties in obtaining independent trials
have led to many attempts to estimate the reliability of
a test from only a single trial by bringing in various
hypotheses. Such hypotheses usually do not afford a
real solution, since ordinarily they cannot be verified
without the aid of at least two independent trials, which
is precisely what they are intended to avoid. (Guttman,
1945, p. 256)

It is typically argued that reliability estimators fall
into three distinct classes: (a) internal consistency co-
efficients, (b) alternative-forms reliability coefficients,
and (c) test-retest coefficients. However, because reli-
ability coefficients that involve multiple occasions for
testing or rating can be estimated using intra-class
coefficients, it seems more appropriate to distinguish
only internal consistency coefficients and intra-class
coefficients. Moreover, the intra-class coefficient in
CTT is essentially a Spearman-Brown extrapolation
of Cronbach’s α (Feldt, 1990), which is itself the
average of all split-half internal consistency correla-
tion coefficients under appropriate model assumptions
(Cronbach, 1951) and is, as such, preferred over a
split-half coefficient computed for some arbitrary
random split. Cronbach’s α can be computed from data
on a single administration of a test and does not require
parallel forms, a test-retest scenario, or multiple judges
for which an intra-class correlation coefficient can be
used. For tests or items that are at least essentially τ

equivalent with uncorrelated errors, α equals the corre-
lation coefficient, and for congeneric tests, it is a lower
bound (Lord & Novick, 1968; see Komaroff, 1997).

Coefficient α is among the most commonly reported
statistics in all of social and behavioral sciences. What
makes it so useful to researchers and test developers?
First, it provides a conservative lower bound estimate
of the theoretical reliability in the worst of situations
(i.e., when essential ? equivalence does not hold). That
is, the proportion of observed-score variance that is due

to true individuals’ differences is in truth at least the
magnitude of coefficient α. Second, it provides this
estimate without having to resort to repeated testing
occasions and without necessitating parallel forms of a
test. Third, it is easily computed and available on most
statistical computer programs. The biggest limitation
of coefficient α is that it results in an undifferentiated
error of measurement. Generalizability theory, on the
other hand, acknowledges that there are several sources
for measurement error, which depend on the various
factors modeled in the measurement experiment, and
that one may want to model these various sources. Of
course, it should be noted that in differentiating the
error of measurement, one is actually also redefining
the consistent or true-score part of the data.

It seems that Guttman’s fears were not warranted
and that we have overcome the problem of estimating
reliability, a property of scores from repeated admin-
istrations, from scores from a single administration.
Unfortunately, the situation may not be that simple
if assumptions underlying the scoring model used are
violated. In considering the assumptions of measure-
ment models (and particularly uncorrelated errors),
Rozeboom (1966) reminds us in his classic text on
test theory that statistical assumptions are empirical
commitments:

However pleasant it may be to shuffle through the inter-
nal statistics of a compound test in search of a formula
which gives the closest estimate of a test’s reliability
under conditions of uncorrelated errors, this is for prac-
tical applications like putting on a clean shirt to rassle a
hog. (p. 415)

More than 35 years ago, Maxwell (1968) showed
analytically that correlated errors lead to biased esti-
mates of the correlation coefficient if an intra-class
correlation coefficient is used as an estimator and
argued that this bias is most likely to be an overes-
timate. It has been confirmed via simulation studies
that Cronbach’s α underestimates ρXX′ under violation
of essential τ equivalence and that it overestimates
ρXX′ if errors are correlated (Zimmerman, Zumbo, &
LaLonde, 1993; see Raykov, 1998b, for composite
tests and Zumbo, 1999a, for a simulation frame-
work), but these effects can be partly attenuated if both
assumptions are violated simultaneously (Komaroff,
1997). Nevertheless, it appears that α is relatively
robust against moderate violations of these assump-
tions (see Bacon, Sauer, & Young, 1995; Feldt, 2002).
Similar results have been found for g-theory designs
with multiple time points. In such designs, under-
estimation was present for uncorrelated errors with
increasing variances over time, overestimation was
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present for correlated errors with equal variances over
time, and both directions of estimation bias were
present for correlated errors with unequal variances
over time (Bost, 1995). It is important to note that
correlated errors may arise for a variety of reasons.
Given the advent of new item formats, one of the
most common reasons for correlated errors is linked
items. That is, historically, measurement specialists
have advocated that items be disjoint statements that
would not result in extra covariation in latent variable
modeling due to item format. Items that are linked,
however, may induce extra covariation among the
items that appear as correlated errors (for an example,
see Higgins, Zumbo, & Hay, 1999). We recommend
that researchers faced with correlated errors arising
from item format see Gessaroli and Folske (2002)
for a useful, yet general, approach for estimating
reliability.

In latent variable modeling, correlated errors
are equivalent to introducing an additional latent
variable (i.e., factor) that loads on the manifest
variables (e.g., MacCallum, Wegener, Uchino, &
Fabrigar, 1993; Raykov, 1998a). Today, FA methods,
particularly CFA, continue to be useful tools to assess
the degree of correlated errors (e.g., Reuterberg &
Gustafsson, 1992) and have recently been used to
construct adjusted αs that reduce and sometimes elim-
inate the inflation effect (Komaroff, 1997). Moreover,
SEM allows for the estimation of a reliability coeffi-
cient for congeneric tests that is not a lower bound for
the true reliability coefficient (unlike Cronbach’s α)
(Raykov, 1997a), along with a bootstrap estimation
of its standard error that does not depend on nor-
mality assumptions (Raykov, 1998b). Unfortunately,
large sample sizes are required for the stable esti-
mation of model parameters, and not all estimation
methods are recommendable (see Coenders, Saris,
Batista-Foguet, & Andreenkova, 1999). Researchers
need to be aware of the additional assumptions that are
required for proper estimation in a covariance structure
analysis (Bentler & Dudgeon, 1996). Among these are
multivariate normality of the response data required for
some estimation approaches, which is unlikely to hold
for categorical data, and large sample sizes required
for asymptotic theory, which are unlikely to exist for
small-scale assessments.

Estimating reliability coefficients and assessing
model assumptions has also been done for more than
three decades using FA methods (e.g., Feldt, 2002;
Fleishman & Benson, 1987; Jöreskog, 1970, 1971;
Kaiser & Caffrey, 1965). It has been shown repeatedly
that the assumption of uncorrelated errors, coupled
with unidimensionality and the use of the simple total

score in observed-score modeling, corresponds to an
orthogonal factor model with a single dominant factor
that has loadings for each item in the test. Under this
model, the reliability coefficient is estimated as the sum
of squared loadings (i.e., the communalities) divided
by the sum of squared loadings plus error loadings
(i.e., communalities plus unique variances).

Along with FA models, SEMs allow for flexible
testing of multiple assumptions such as type of model
(i.e., parallel, τ equivalent, congeneric), correlation
of errors, invariance across time, and invariance across
subgroups (e.g., Feldt, 2002; Fleishman & Benson,
1987; Raykov, 1997a, 1997b, 1998a, 1998b, 2000,
2001). In an SEM framework, the reliability co-
efficient can be estimated as an internal parameter
or an external parameter of the model, and test or
item weights can either be preset by the investigator
or estimated as factor loadings simultaneously with
all other model parameters. The general approach for
testing assumptions about error structures using SEM
requires at least four items or tests due to the identifi-
cation requirements of the model so that all hypothesis
tests, including the one about congenerity, can be
performed (e.g., Raykov, 1997a). In addition to coeffi-
cient α, the omega coefficient with equal and unequal
weights has been proposed; unequal weights are pre-
ferred by some authors because the coefficient never
increases when items are dropped. Note, however, that
reliability estimates are not necessarily recommended
as sole yardsticks for test construction (Bacon et al.,
1995). More recently, SEM has been advocated by
some to model the type of correlation structure via
integrated time-series models, but the practical utility
of that approach remains limited at this point (Green &
Hershberger, 2000). Finally, note that, just as attenu-
ated correlation coefficients have been shown to be
sensitive to the true-score distributions for exami-
nees (Zimmerman & Williams, 1997), coefficient α is
sensitive to the score distribution of examinees, which
has led to the proposal of a robust generalization of α

that is insensitive to tail fluctuations in this distribution
(Wilcox, 1992).

So what is a practitioner to do when coefficient α

needs to be estimated? It appears that for small sample
sizes, sophisticated latent trait models would provide
unreliable results, and the effort of estimating these
is probably not worth it. If the sample size is large
(e.g., at least 200 examinees for moderate tests as a
guiding principle) and one has complex item formats,
then latent trait models such as SEM may be useful to
estimate reliability and related quantities. It is impor-
tant to always be aware of the model assumptions that
are lurking in the background when choosing a par-



Chapter 4/Responsible Modeling of Measurement Data for Appropriate Inferences • 81

ticular scoring model (Zumbo, 1994), however, and
for larger sample sizes and high-stakes assessment
scenarios, these should be investigated to obtain the
most accurate estimate of reliability and measurement
error. We recommend Gessaroli and Folske’s (2002)
approach.

4.3.3. Hypothesis Tests
for Reliability Coefficients

The intra-class correlation coefficient, which can be
used for test-retest, parallel forms, subtest, and inter-
rater reliability, has found wide applications in social
and behavioral research (Alsawalmeh & Feldt, 1992).
Its distribution theory and the distribution theory
for Cronbach’s α have recently been developed in
more detail (Feldt, 1990; van Zyl, Neudecker, &
Nel, 2000). Hence, approximate tests have been
developed for two independent intra-class reliability
coefficients (Alsawalmeh & Feldt, 1992), two inde-
pendent coefficient αs (Alsawalmeh & Feldt, 1999;
Charter & Feldt, 1996), and two dependent co-
efficient αs (Alsawalmeh & Feldt, 2000). Simi-
larly, tests for disattenuated correlation coefficients
can be easily formulated in an SEM framework
(Hancock, 1997).

Note, however, that not all distributional results are
easily applicable across a wide range of situations. For
example, the asymptotic distribution of the maximum
likelihood (ML) estimator of ? derived by van Zyl et al.
(2000) requires no assumptions about the covariance
structures of the items; yet, as an asymptotic result,
it requires large sample sizes. Furthermore, the multi-
variate normal distribution of the item response data is
unlikely to hold for dichotomously scored items.

Because the meaningful interpretation of hypothe-
sis test results depends on the power of the test, it
is essential to understand that the power of a test is
not a function of the reliability coefficient but a rela-
tion of it (Williams, Zimmerman, & Zumbo, 1995;
Zimmerman, Williams, & Zumbo, 1993a, 1993b). As
these authors remind us, power is a function of the
absolute value of observed variance, and its relative
decomposition is irrelevant, even though it influences
the magnitude of the reliability coefficient. However,
formulas for computing the power and required sample
size of a test for comparing coefficient αs for two
populations can indeed depend on the direct magnitude
of the respective sample values for the coefficient αs
due to the sampling theory involved (Feldt & Anken-
mann, 1998). In summary, the class of statistical

tests for population reliability coefficients has been
broadened, and even though the individual papers need
to be referred to for the exact ways of conducting the
tests, these tests are often not difficult.

4.3.4. Maximizing Reliability
Coefficients and Composite Scores

It has long been acknowledged that Cronbach’s
α is not an indicator of test homogeneity or unidi-
mensionality (e.g., Green, Lissitz, & Mulaik, 1977;
Miller, 1995), and violations of the assumption of
test homogeneity have been researched (e.g., Feldt &
Qualls, 1996). If tests are measuring several related
constructs, modelers in CTT deal with this by con-
structing composite test scores that receive appro-
priate weights using a table of specifications. Using
a composite-score analysis instead of a total-score
analysis may have a strong effect on the reliability
estimate for the data, though. Formulas exist, most
commonly for congeneric tests, which maximize
reliability measures under different conditions (e.g.,
Armstrong, Jones, & Wang, 1998, for coefficient
α; Goldstein & Marcoulides, 1991, and Sanders,
Theunissen, & Baas, 1989, for generalizability co-
efficients; Knott & Bartholomew, 1993, for a normal
factor model; Li, 1997, for a composite score; Li,
Rosenthal, & Rubin, 1996, for cost considerations;
Rozeboom, 1989, for using regression weights on a
criterion variable; Segall, 1996, for linearly equated
tests; Wang, 1998, for congeneric models).

Maximizing reliability is akin to determining the
ideal sample size for a designed experiment under
power considerations, and so, just as in traditional
statistical design, practical consideration will even-
tually be the ultimate determining factor for test
construction or the analysis method as some tests
proposed to maximize reliability seem to have unre-
alistic characteristics (e.g., 700 multiple-choice items;
see Li et al., 1996). In addition, most formulas for
composite reliability coefficients require knowledge of
the componential reliability coefficients. If reliability
information is not available on the subcomponents that
are supposed to be weighted, a multivariate covariance
structure analysis approach may be called for, and for-
mulas for weights that maximize reliability have been
derived for some cases (Wang, 1998).

Coefficient α and intra-class correlation coefficients
are not the only means of indexing measurement
precision. In fact, they are only single numbers
that capture the quality of the scores in a rather
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superficial sense. To obtain more precise information
about how measurement error actually affects the
scores and hence decisions about examinees, we need
to turn to score-level measures of precision.

4.3.5. Local Estimates of Precision in Scores

Scoring test data eventually brings about conse-
quences for examinees. These consequences are math-
ematically dependent on accurately estimating the
error associated with examinees’ scores, which is most
crucial for examinees with an observed score some-
where around the cut-score in criterion-referenced
assessment or along the entire continuum for norm-
referenced assessment. It has long been recognized
that the score error is not constant along the contin-
uum, even though in early work in CTT, unconditional
raw-score SEM was reported and used. However,
responsible data analysts and decision makers are
aware that score error varies along the ability con-
tinuum, and more evidence from different estimation
methods has been accumulated in the past decade to
support this. Generally speaking, for observed-score
models, curves depicting the conditional SEM will
be somewhat inverse U-shaped, with smaller standard
errors near the upper and lower tails of the true-score
continuum and larger standard errors in the center of
the true-score continuum. In contrast, the local preci-
sion curve for a test analyzed via IRT methods has the
opposite, regular U shape. That is, there is less error
in the center of the latent continuum near the point of
maximum test information and more error for extreme
values on the latent continuum. Thus, local measures
of precision need to be considered in observed and
latent variable models. Moreover, it is clear that a
conditional raw-score standard error of measurement
(CRS-SEM) should be used for fair decision making
based on raw scores and that a conditional scale-score
standard error of measurement (CSS-SEM) should be
reported if raw scores are transformed via linear or
nonlinear transformations to some other practically
meaningful scale such as the percentiles, grade point
equivalent, or stanine scales.

Although in the 1989 chapter by Feldt and Brennan,
CRS-SEM only received a two-page treatment nested
within a section on “special” issues in reliability and
CSS-SEM was not discussed in much detail, during the
past decade, researchers in the field of measurement
have produced a series of papers that meticulously
investigated different approaches to estimating local
or conditional standard errors for scoring models on
different scales and the behavior of these approaches

in different calibration situations (e.g., Brennan,
1998b; Brennan & Lee, 1999; Feldt, 1996; Feldt &
Qualls, 1996, 1998; Kolen, Hanson, & Brennan, 1992;
Kolen, Zeng, & Hanson, 1996; Lee, 2000; Qualls-
Payne, 1992; see also May & Nicewander, 1994). In
general, most methods produce similar results that
lead only to slight differences in confidence inter-
val width if the conditional standard errors are used
for their construction. As usual, CTT methods are
comparatively easier to compute and do not rely as
heavily on larger sample sizes for stable parameter
estimation.

From earlier discussions, it should be clear that
the explicit treatment of specific error structures in
scoring models has been one the most important
contributions in the past decade. Within an observed-
score context of conditional standard error, this has
most notably resulted in a synthesis of conditional
standard error estimation approaches for g-theory
designs and estimations that include CTT scenarios
as special cases (Brennan, 1998b). Within a latent
trait framework, the dependency of responses for items
presented with the same stimulus in testlets has driven
researchers to develop a Bayesian estimation frame-
work for dichotomous and polytomous items on the
same test scored with IRT models (Bradlow et al.,
1999; Wainer, Bradlow, & Du, 2000; Wainer &
Thissen, 1996; Wainer & Wang, 2001; Wang et al.,
2002; see also Sireci, Thissen, & Wainer, 1991, for
reliability estimation as well as Lee & Frisbie, 1999,
for a g-theory approach). These studies have found
that incorporating testlet effects into an IRT model
or g-theory model always improved estimation accu-
racy by incorporating within-testlet response pattern
information into parameter estimates and is necessary
if strong testlet effects are present to prevent biased
ability estimates and thus incorrect decisions. This
conclusion was further supported in a direct compari-
son of CRS-SEM estimates with models that accounted
for testlet effects producing more accurate CRS-SEM
under all conditions, even though g-theory estimation,
as an alternative to IRT testlet models, worked well
under mild testlet dependencies (Lee, 2000; see also
Lee & Frisbie, 1999). Again, the message is that for
larger sample sizes, it is particularly important to assess
whether model assumptions are likely to hold, but for
both smaller and larger sample sizes, conditional stan-
dard errors should be computed and used for decision
making. It appears that the particular method for com-
puting CRS-SEM or CSS-SEM does not matter much
for most practical decisions and that the one that is
simplest to implement should be chosen.
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4.3.6. Relationships Between Error
Estimates in Different Scoring Frameworks

We want to close the discussions about reliability
and measurement error with a section on relation-
ships between observed-score and IRT models as some
concepts are often confused. As we have just seen,
the notion of a local measure of precision, which
is captured by the information function in IRT, also
exists in CTT through conditional standard errors
for raw and scale scores. Moreover, it is similarly
possible to compute information functions in CTT
(Feldt & Brennan, 1989; Mellenbergh, 1996) as
well as unconditional standard errors and reliability
coefficients in IRT (e.g., Samejima, 1994). In particu-
lar, the IRT equivalent to the unconditional standard
error in CTT is the expectation of the asymptotic
conditional standard error:

SEM = σε =
∞∫

−∞
[I (θ)]−1/2f (θ)dθ.

For practical estimation purposes, the information
function in the above equation is replaced by the
estimated test information function, and the ability
distribution can be empirically estimated if condi-
tional unbiasedness of θ̂ holds; otherwise, test infor-
mation functions adjusted for bias should be used
(Samejima, 1994). The reliability coefficient can now
be predicted from a single administration of a test
using the observed variation in θ and the estimated
standard error as described above (in the formula, SEM
indicates standard error):

ρ̂θ̂1,θ̂2
= Vâr(θ̂) − SÊM

Vâr(θ̂)
= Vâr(θ)

Vâr(θ̂)
.

The relationship between the multiple-occasion
estimators of the reliability coefficient in CTT and
IRT models has been investigated for some time, and
some authors even go so far as to declare the reliability
coefficient redundant (Samejima, 1994, p. 243). This
statement seems a bit extreme because the appropri-
ateness of an IRT estimate of reliability depends on
the accuracy of the fitted model (see Meijer, Sijtsma,
& Molenaar, 1995, p. 334, for this argument in a
nonparametric context), and fitting a more complex
IRT model may require more data than are available
at a given moment. In addition, even though in IRT,
standard errors are larger at the extreme ends of the
scale (Lord, 1980), this is dependent on the choice of
transformation from the true score to the latent trait
scale, and dramatic differences between conditional
standard errors can be observed for different choices
of transformation (see Brennan, 1998b).

As another similarity between CTT and IRT models,
recall that the reliability coefficient in CTT is the ratio
of true-score variance to total observed variance or the
ratio of signal to signal plus noise. Put differently,
the signal-to-noise ratio equals the correlation coef-
ficient divided by 1 minus the correlation coefficient.
Therefore, a local reliability coefficient can be defined
as a function of the item information function, which
is itself proportional to the local signal-to-noise ratio
(Nicewander, 1993).

Conditional standard errors for absolute decisions
(and thus dependability coefficients) or relative deci-
sions (and thus generalizability coefficients) can also
be formulated in g-theory (Brennan, 1998b, 2001).
In g-theory, the class of model specifications, albeit
all generalized linear models (GLIMs), has been
enlarged, but typically larger sample sizes are required
for accurate estimation of variance components. In
IRT, the class of GLIMs uses different link functions,
but choices have to be made now between logit and
probit models, the number of parameters in the model,
and whether to choose a parametric or nonparametric
formulation. In the latter case, reliability estimation is
not even common practice, and even though a reliabil-
ity coefficient that is related to a scalability coefficient
can be estimated in Mokken’s nonparametric alter-
natives to the Rasch model, their complementary
uses remain unclear (Meijer et al., 1995; Meijer,
Sijtsma, & Smid, 1990).

Finally, it needs to be highlighted that one of the
advantages of reliability estimation in CTT is the
relative simplicity of the model, whose only major
alternatives consisted of different assumptions about
its unobserved components. Claims that CTT is merely
a special case of IRT (Nicewander, 1993) or FA seem
to be overstatements and seem to ignore the difference
between score-level and item-level modeling, as well
as between a latent variable and a more general un-
observed variable such as the true score in CTT. To the
contrary to the overstatement, it can be argued that IRT
is a first-order approximation to CTT. The overstate-
ment also ignores the role that parameter estimation
strategy has in defining a psychometric model. Put
simply, the liberalization of CTT into g-theory—along
with its reformulation and extension, in latent variable
terms, in FA and SEM—and the advent of IRT have
come at the price of stronger requirements on the data,
which have affected reliability estimation. For larger
sample sizes, we can definitely investigate more com-
plex assessment scenarios through g-theory, as well
as more complex dependency structures through FA
and SEM, and achieve invariance properties for adap-
tive testing in IRT (see Rupp, 2003; Rupp & Zumbo,
2003, in press, on quantifying a lack of invariance
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in IRT models), but for smaller sample sizes, these
advances are often of limited benefit to the practitioner.
In addition, no matter how sophisticated the model
statement and estimation routines have become, a test
of poor validity and thus poor conceptual reliability
will always remain unaltered. This brings us to our
final section.

4.4. Validity and

the Practice of Validation

Validity theory aids us in the inference from the
true score or latent variable score to the construct of
interest. In fact, one of the current themes in valid-
ity theory is that construct validity is the totality of
validity theory and that its discussion is comprehen-
sive, integrative, and evidence based. In this sense,
construct validity refers to the degree to which infer-
ences can be made legitimately from the observed
scores to the theoretical constructs about which these
observations are supposed to contain information. In
short, construct validity involves generalizing from
our behavioral or social observations to the con-
cept of our behavioral or social observations. The
practice of validation aims to ascertain the extent
to which an interpretation of a test is conceptually
and empirically warranted and should be aimed at
making explicit hidden ethical and social values that
influence that process (Messick, 1995).

It is hard not to address validity issues when one is
discussing errors of measurement. Yet the develop-
ments in validity theory have not been as dramatic
over the past 15 years as have been the developments
in reliability estimation and measurement model
development. For a cursory overview, several papers
are available that describe important current develop-
ments in validity theory (Hubley & Zumbo, 1996;
Johnson & Plake, 1998; Kane, 2001). In brief,
the recent history of validity theory is perhaps best
captured by the following observations.

• As one can see in Zumbo’s (1998) volume, there
is a move to consider the consequences of inferences
from test scores. That is, along with the elevation of
construct validity to an overall validity framework for
evaluating test interpretation and use came the consid-
eration of the role of ethical and social consequences as
validity evidence contributing to score meaning. This
movement has been met with some resistance. In the
end, Messick (1998) made the point most succinctly
when he stated that one should not be simply concerned

with the obvious and gross negative consequences of
score interpretation, but rather one should consider the
more subtle and systemic consequences of “normal”
test use. The matter and role of consequences still
remains controversial today and will regain momentum
in the current climate of large-scale test results affect-
ing educational financing and staffing in the United
States and Canada.

• Although it was initially set aside in the move to
elevate construct validity, criterion-based evidence is
gaining momentum again in part due to the work of
Sireci (1998).

• Of all the threats to valid inferences from test
scores, test translation is growing in awareness due
to the number of international efforts in testing and
measurement (see Hambleton & Patsula, 1998).

• The use of cognitive models as an alternative to
traditional test validation is gaining a great deal of
momentum. One of the limitations of traditional quan-
titative test validation practices (e.g., factor-analytic
methods, validity coefficients, and multitrait multi-
method approaches) is that they are descriptive rather
than explanatory. In other words, they are statisti-
cal and not psychological. Models for cognitively
diagnostic assessment, particularly the work of Susan
Embretson and Kikumi Tatsuoka, has expanded the
evidential basis for test validation as well as the nomo-
thetic span of the nomological network. The basic
idea is that if one could understand why an individual
responded a certain way to an item, then that would go
a long way toward bridging the inferential gap between
test scores and constructs.

Given that cognitive models present one of the
most exciting new developments with implications for
validity theory, the next section discusses them in
more detail.

4.4.1. Cognitive Models for a Stronger
Evidentiary Bases of Test Validation

It is informative to start this discussion by addressing
the use of the term cognitive psychology in the literature
on cognitive models. For many assessment situations,
researchers use the word cognition to loosely refer to
any process that is somehow grounded in our minds
and therefore eventually our brains. Yet there is little
doubt that measurement specialists are not interested
in the biological or neuroscientific bases of cognitive
processes for typical cognitively diagnostic assess-
ments, so that we really often mean a “soft” form of
cognitive psychology in a measurement context.



Chapter 4/Responsible Modeling of Measurement Data for Appropriate Inferences • 85

Some will undoubtedly argue that it is not the job
of a psychometric data modeler to worry about what
is done with the numerical estimates once they are
handed down, but it is exactly this neglect of mean-
ingful inferences at the expense of sophisticated
estimation techniques that has often eradicated the
psychology in “psycho”-metrics. The realization that it
is time to put psychology back into the equation so that
investigators who desire “reliable” tests are assured by
modelers that their data do indeed provide evidence for
dependable meaningful inferences. To appreciate the
relevance and importance of cognitive models, one has
to understand that we have not made many significant
advances toward explicit validation of the inferences
drawn from test scores through mathematical models.
This holds true despite the injection of a latent contin-
uum that allows modelers to extract information from
test data more flexibly and accurately at the item level
in IRT. For example, Junker (1999) suggests that

despite the persistence of the “latent trait” terminology
in their work, few psychometricians today believe that
the latent continuous proficiency variable in an IRT
model has any deep reality as a “trait”; but as a vehi-
cle for effectively summarizing, ranking, and selecting
based on performance in a domain, latent proficiency
can be quite useful. (p. 10)

The main goal of modeling test data should always
be to make valid inferences about the examinees, but
the validity of these inferences cannot be mechanically
increased by inducing latent constructs into the data
structure.

Cognitive models seek to explicitly represent the
cognitive processes that examinees engage in when
responding to items through parameters in mathemat-
ical models, which typically consist of augmented
IRT models, classification algorithms based on reg-
ular IRT models, or Bayesian inference networks
that have IRT models as a central component. One
approach to cognitively diagnostic assessment is the
rule-space methodology that attempts to classify exam-
inees into distinct attribute states based on observed
item response data, an appropriate IRT model, and
the attribute specification for the items (Tatsuoka,
1983, 1991, 1995, 1996; Tatsuoka & Tatsuoka,
1987). Despite a lack of consensus in the litera-
ture about what is meant exactly by an attribute
and the sensitivity of the classification to the appro-
priateness of the chosen IRT model, this approach
forces test developers to specify prerequisite cog-
nitive characteristics of examinees—ideally before
designing a test (Gierl, Leighton, & Hunka, 2000).
Other approaches based on item attribute incidence

or Q-matrices have been developed (e.g., DiBello,
Stout, & Roussos, 1995), but their main weakness
to date remains the vagueness and lack of guid-
ance in attribute specification (e.g., Junker & Sijtsma,
2001). Developments in cognitive models have often
taken place primarily in educational achievement and
psychoeducational assessment contexts, though. An
exception was Zumbo, Pope, Watson, and Hubley
(1997) in personality assessment, in which they studied
the relation of the abstractness and concreteness of
items to the psychometric properties of a personality
measure. Other advances are currently made in the
development of simulation-based assessment software
that emphasizes a deeper and richer understanding of
the cognitive processes required for performing certain
tasks in which data are analyzed through Bayesian
networks (Mislevy, Steinberg, Breyer, Almond, &
Johnson, 1999).

More sophisticated models for cognitive assessment
do not come without a price. One of the components
of this price is again sample size because more com-
plex IRT models, cognitive state models, or Bayesian
inference networks typically require a larger number of
parameters to be estimated. More important, however,
the more useful models for cognitively diagnostic
assessment are built on a solid understanding of the
cognitive processes underlying the tasks that are being
assessed. As an excellent example, consider the work
by Embretson (1998), who used the cognitive process
analysis of the Raven’s Advanced Progressive Matrix
test by Carpenter, Just, and Shell (1990) to model
examinees’ responses, extract diagnostic information,
and generate similar items. Comprehensive models of
cognitive abilities are still relatively rare, and even
though advances have been made, it is necessary to
note that their most important cornerstone, the analysis
of cognitive processes, is still their weakest element.

The issue is less a lack of models for new kinds of
test data but rather a lack of awareness in the applied
world that these models exist along with a mismatch
of assessment instruments and modeling practice. In
other words, if test developers are interested in provid-
ing examinees and institutions with richer profiles of
abilities and developmental progress, the nature of the
assessment methods has to change to provide richer
data sets from which relevant information can be more
meaningfully extracted. What is meant by more mean-
ingful will, of course, in the end depend on the use
of the assessment data, but in general, authorities in
the field are nowadays beginning to agree on that we
need more than simple test responses scored 0 and 1
to validate the inferences that are being made from the
test data. As Embretson’s (1998) work demonstrates,
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the key to useful cognitive models is that they need to
be explanatory and not just another set of descriptive
models in cognitive terms rather than mathematical
terms (Zumbo & MacMillan, 1999). Put differently,
a change of terminology is insufficient to claim true
advances in gathering more meaningful and weighty
validity evidence.

A similar push for explanatory power has also taken
place in the area of differential item functioning,
where attitudinal, background, and cognitive variables
are used to account for differential achievement pro-
files to investigate the inferential comparability of
scores across populations (Klieme & Baumert, 2001;
Watermann & Klieme, 2002). The developments
that are currently taking place serve in part as a
consciousness-raising device to help test developers
and users to reflect more closely on how valid their
inferences from test data really are and how these
inferences can be improved. This continues the path
toward a comprehensive and unified validation process
of assessment instruments that has been eloquently laid
out by Messick (1989, 1995).

4.4.2. Implications of Cognitive Models
for Modeling Novel Dependency Structures

In traditional psychometric models, dependencies
among item responses over and above what can
be accounted for by the unobserved variables have
been a dreaded feature of test data, and every effort
has always been made to eliminate this dependency
through test design or modeling efforts. This may
be the wrong lens that is applied to the data, and
it appears that cognitively diagnostic assessments—
along with models for testlet structures and more
complicated error dependencies—are the new figures
that are slowly taking shape under a new perspective
on items and responding to items. We have begun to
shift our thinking back to the individual examinees
because we are starting to realize that the goal of any
assessment, be it strictly cognitively diagnostic or not,
is to arrive at better inferences about examinees’ abili-
ties. Furthermore, item difficulty and discrimination
are properties of the examinees that respond to the
items because the items are windows into the minds of
the examinees and are not qualities inherent in items
independent of populations of examinees.

All of this is to say that the current push toward
cognitively diagnostic assessment seems to be more
than just an extension of currently existing models and
statistical methodologies to richer domains. In fact, it
is our chance to clean our windows into the minds
of examinees and to refocus our lenses toward the

examinees as the unit of investigation that matters
most. From a mathematical perspective, this means
looking for different types of information in data struc-
tures that may posit new challenges to the modelers.
In particular, if cognitive processes are highly inter-
related in complex neural networks at a biological-
chemical level, then we can expect that item responses
are probably also interrelated to a much higher degree
than gives us comfort. Indeed, what we need is an
extension of the models that are currently used in
covariance structure analysis because the future seems
to lie in accepting covariation and interrelationships
rather than dreading them.

This can be seen not only in the models and scenar-
ios discussed so far but also by looking at the variety
of item types that can be found in new tests across
multiple disciplines (Zenisky & Sireci, 2002). As these
authors show, traditional test formats have been aug-
mented with a whole new battery of items that require
the test taker to engage in more sophisticated com-
plex cognitive processes. We certainly have choices
when scoring these item types as we really also have
when dealing with the items that are used in cogni-
tively diagnostic assessments. We could theoretically
score them all 0–1 or on a simple graded scale and
apply traditional models in CTT, g-theory, or IRT to
the responses. We might find, however, that depen-
dency structures in the data sets might compromise
our simple analyses because the items are not isolated
items anymore. Indeed, to use such items more suc-
cessfully, it would make much more sense to focus on
the interdependencies and go from there.

It should also be noted that the nature of depen-
dencies that are deliberately build into more complex
item types has crept up with traditional tests as well.
For example, researchers have been busy investigat-
ing the data structure for CTT models in terms of
the degree of test parallelism. As one dimension of
complexity, researchers have defined parallel, essen-
tially parallel, τ -equivalent, essentially τ -equivalent,
and congeneric tests; as a second dimension, they
consider uncorrelated and correlated errors; and as
a third, they investigate sampling type (i.e., Type 1,
Type 2, Type 12). With all these considerations at
hand, psychometricians have been busy trying to find
the best estimators of quantities such as the reliability
coefficient or conditional standard errors for different
data structures. Nevertheless, we are faced these days
with data structures that do not adhere to any of the
criteria above (e.g., spherical covariance matrices; see
Barchard & Hakstian, 1997; Hakstian & Barchard,
2000), which compel us to search for better descrip-
tions of the data structure at hand.



Chapter 4/Responsible Modeling of Measurement Data for Appropriate Inferences • 87

4.5. Conclusion

The emphasis on this chapter has been on measure-
ment error, reliability, and validity through the lens
of scoring data from tests within a particular scoring
framework. We have highlighted on several occasions
the distinctions between observed variable frameworks
(i.e., CTT and g-theory) and latent variable frame-
works (i.e., EFA, CFA, SEM, and IRT). We believe
it is important to understand that the use of a par-
ticular scoring model always remains the choice of
the data analyst and is not necessitated by the data.
More often than not, the choice of a particular scoring
model is the result of personal beliefs, training, and
working conventions (Rupp & Zumbo, 2003). Yet it
has severe consequences for how we define, quantify,
and use measurement error and the decisions that we
base thereon. Choosing a scoring model is an empir-
ical commitment that demands the data analyst take
responsibility for the consequences imparted on the
examinees by this choice.

To underscore this responsibility one last time, con-
sider for a moment a few issues that can arise with
some popular scoring models. When working within a
latent variable framework, it is certainly irresponsible
to blindly fit IRT models to any kind of data—even if
the models formally match the type of scores given
(e.g., dichotomous, polytomous)—without ensuring
that sufficiently large and representative calibration
samples are available so that stable and representative
parameter estimates can be obtained. If the parameters
are not well estimated, decisions will be biased. In
addition, if the intention is to use a one-shot calibra-
tion at one point in time with one set of examinees,
it is logically inconsistent to justify the use of an IRT
model because model parameters possess the feature
of invariance. Invariance refers to the identity of item
and examinee parameters from repeated calibration for
perfect model fit and is not needed in this case. Hence,
it should not be cited as the primary reason for using
such a model.

Another example comes from the area of cogni-
tively diagnostic assessment. Without any detailed data
collected on examinees and any detailed attempts to
develop realistic processing models, truly cognitively
diagnostic assessment is not possible. In addition, an
augmented IRT model for cognitive assessment needs
to be judiciously chosen based on the cognitive theory
underlying the test response processes and not simply
because it is an interesting extension of basic IRT
models (for excellent examples, see Embretson, 1998;
Maris, 1995).

In the area of observed-score modeling, it is equally
irresponsible to use the unconditional raw-score stan-
dard error when a large body of evidence has shown for
years that CRS-SEM varies along the score continuum.
Similarly, CSS-SEM needs to be computed separately
if scores are transformed to scales such as stanine, per-
centile, or grade-equivalent scales as it also varies and
is generally not equal to the CRS-SEM. Using inappro-
priate measures of error can lead to incorrect and unfair
decisions for some, if not most, students. On a more
subtle level, most observed-score scoring methods rely
on assumptions about the score matrix such as paral-
lelism, essential τ equivalence, or congenerity. In some
cases, failing to adjust reliability coefficients or other
measures of error to the right model can lead to biased
statements about a test, overconfidence in test use, and
unfair decisions about examinees. Moreover, factor-
analytic procedures and software can nowadays easily
be used to test for these assumptions and to produce
appropriate error estimates for larger sample sizes.

It is the responsibility of mathematically trained
psychometricians to inform those who are less versed
in the theory about the consequences of their deci-
sions to ensure that examinees are assessed fairly.
Because models (which, in part, include the param-
eter estimation strategy) are empirical commitments,
it is measurement specialists who need to take partial
responsibility for the decisions that are being made
with the models they provide to others. Everyone
knows that a useful and essential tool such as an auto-
mobile, a chainsaw, or a statistical model can be very
dangerous if put into the hands of people who do not
have sufficient training and handling experience or lack
the willingness to be responsible users.

All of this is not to say that decision-making disas-
ters will immediately occur if the above things are not
adhered to in the fullest. However, it can also be too
tempting to take that exact fact to be less stringent and
less careful about our practices, and we believe it is
important that we all in the psychometric community
work together to ensure fair and sound decision mak-
ing. Technological advances have opened up doors for
us to do more sophisticated and complex simulation
work, analyze richer and more nested data structures
than ever before, and synthesize findings across anal-
yses. At the same time, it is important to remember
that examinees are typically not interested in the par-
ticular scoring models used for obtaining their score
but rather in a fair assessment, which simply translates
to fair decisions based on their responses. The term
fair is of course heavily value laden and can take on
different shades of meaning for different examinees,
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but nevertheless responsible data models consider the
consequences of test score interpretation for which
they provide the numerical ingredients.

Numerous questions about the reliability of tests
have been asked in the past decade, and important
advances have been made in the area of estimating
conditional standard error for nonlinear scale trans-
formations, estimating bias of reliability coefficient
estimates such as coefficient α under simultaneous
violations of assumptions, deriving algorithms for
maximizing α, deriving tests for αs from different
populations, and establishing relationships between
CTT, g-theory, IRT, and SEM that show the inter-
relatedness of these procedures. In other words, we
have been able to make convincing arguments for the
unification of measurement models (see McDonald,
1999; Rupp, 2002; Zimmerman & Zumbo, 2001), and
we have made convincing arguments for advantages of
g-theory over CTT, IRT over g-theory, IRT over
CTT, and SEM over g-theory, CTT, and IRT and
so on. Important research in this area still needs to
happen, and a wealth of unanswered research questions
can be found in the concluding sections of the more
than 100 articles that we could find in journals over
the past 10 years.

We believe that this is fruitful work but that it is at
least as important to reflect on our testing practice in the
new millennium. Cognitively diagnostic assessments
will play an important part, but we believe that they
will neither replace traditional assessments entirely in
the near future nor answer all of the problems encoun-
tered by psychometricians at the moment. But they
are the psychometric discipline’s way of pointing out
that data modelers are ready to face new challenges
posed by the need for richer information about exam-
inees, concurrent new item types, redefinitions of the
construct of an item itself, and a higher degree of inter-
relatedness of responses from a mathematical as well
as from a soft cognition perspective. Reliability and
validity will always be important in test development.
Reliability indices are not irrelevant, as some proclaim,
because they serve different purposes than conditional
SEM and test information functions, and validity will
always be the cornerstone of test development and
use, particularly if we move to a more unified test
development–data modeling–test use process. Mea-
surement specialists are beginning to talk and reach
out to each other more and more across disciplines and
cultural boundaries. Content experts, psychometric
data analysts, and cognitive psychologists may not
always be at the same table yet, but at least they
are more often pooling their expertise in the same
metaphorical room, and that is certainly a good thing.

We are far from a practical revolution in testing, but
we seem to be at an exciting juncture for pausing and
reflecting on what to focus on.
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